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A fundamental goal of memory research is to specify the conditions
that lead to the strengthening and weakening of neural representa-
tions. Several computational models of memory formation predict
that learning effects should vary as a nonmonotonic function of
the amount of excitation received by a neural representation.
Specifically, moderate excitation should result in synaptic weak-
ening, while strong excitation should result in synaptic strength-
ening. In vitro investigations of plasticity in rodents have provided
support for this prediction at the level of single synapses. However,
it remains unclear whether this principle scales beyond the synapse
to cortical representations and manifests changes in behavior. To
address this question, we used electroencephalogram pattern
classification in human subjects to measure trial-by-trial fluctua-
tions in stimulus processing, and we used a negative priming
paradigm to measure learning effects. In keeping with the idea that
moderate excitation leads to weakening, moderate levels of
stimulus processing were associated with negative priming (slower
subsequent responding to the stimulus), but higher and lower levels
of stimulus processing were not associated with negative priming.
These results suggest that the same principles that account for
synaptic weakening in rodents can also account for diminished
accessibility of perceptual representations in humans.
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Introduction

One of the fundamental goals of learning and memory research

is to specify the conditions that trigger the strengthening and

weakening of neural representations (Hebb 1949). In this

study, we tested the hypothesis that neural representations are

weakened when the neurons that comprise those representa-

tions receive a moderate degree of excitation. Figure 1 illus-

trates this hypothesized relationship: For very low levels of

postsynaptic excitation, connections into the postsynaptic

neuron remain unchanged; for moderate levels of excitation,

connections into that neuron from other active neurons are

weakened; for higher levels of excitation, connections into that

neuron from other active neurons are strengthened. Because

the relationship between excitation and change in connection

strength reverses as the level of excitation goes up, we refer to

this as the ‘‘nonmonotonic plasticity hypothesis.’’

This nonmonotonic plasticity hypothesis has been instanti-

ated in several neural network learning algorithms (Bienenstock

et al. 1982; Diederich and Opper 1987; Gardner 1988; Vico and

Jerez 2003; Senn and Fusi 2005; Norman et al. 2006). Simulation

studies have used variants of this hypothesis to explain

numerous neuroscientific findings (e.g., patterns of visual cortex

plasticity; Cooper et al. 2004) and psychological findings

(e.g., patterns of forgetting on episodic and semantic memory

tests; Norman et al. 2007). Also, numerical and analytical studies

have demonstrated that nonmonotonic learning algorithms can

have desirable functional properties; for example, the non-

monotonic rule described by Diederich and Opper (1987) and

Gardner (1988) yields higher associative memory storage

capacity than the (monotonic) Hopfield learning rule (Hopfield

1982; Amit et al. 1985, 1987).

Currently, studies of individual synapses in rodents provide

the most direct empirical support for the nonmonotonic

plasticity hypothesis. For example, it has been found that

moderate depolarizing currents and intermediate concentra-

tions of postsynaptic Ca2
+

ions (indicative of moderate

excitatory input) generate long-term depression (i.e., synaptic

weakening), whereas stronger depolarization and higher Ca2
+

concentrations (indicative of greater excitatory input) gener-

ate long-term potentiation (i.e., synaptic strengthening) (Artola

et al. 1990; Hansel et al. 1996).

The goal of this study was to test if the nonmonotonic

plasticity hypothesis also applies at the level of distributed neural

representations in humans. Simulation studies by Norman et al.

(2006) and others suggest that nonmonotonic plasticity should

scale up to neural ensembles: Moderate excitation of the neural

ensemble responsible for representing a stimulus should lead to

overall weakening of that ensemble (by weakening synapses

within the ensemble and synapses coming into the ensemble).

To test this prediction, we used pattern classifiers, applied to

electroencephalogram (EEG) data, to measure stimulus pro-

cessing (Haynes and Rees 2006; Philiastides and Sajda 2006;

Philiastides et al. 2006), andweused a negative priming paradigm

to measure learning effects (Tipper 1985).

In the negative priming paradigm, subjects are asked to

ignore a stimulus (the prime) and later are asked to respond to

that stimulus as quickly as possible; the basic negative priming

effect is that subjects are slower to respond to the previously

ignored prime than to a novel stimulus (for a review, see Fox

1995). The nonmonotonic plasticity hypothesis can explain

this finding by positing that, on average, ignored primes are

processed moderately and (consequently) are weakened,

leading to slower subsequent processing. The key prediction

of the nonmonotonic plasticity hypothesis, in this context,

relates to how variability in processing of the ignored prime

(across trials) should relate to the size of the negative priming

effect: Moderately processed primes should show a robust

negative priming effect, but primes that happen to receive lower

or higher levels of processing should not show the predicted

negative priming effect (see Fig. 1). This is the specific prediction

that we set out to test in our experiment. We used EEG pattern

classifiers to covertly measure processing of the ignored prime

on each trial, and we related this trial-by-trial measure of prime

processing to the size of the negative priming effect.
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Materials and Methods

In this section, we first discuss the behavioral paradigm; next, we

discuss our EEG data collection methods; after that, we discuss our EEG

pattern classification methods; finally, we discuss the steps involved in

our main analysis, where we related the output of the EEG pattern

classifier to behavioral priming effects.

Subjects
Twenty subjects were recruited for this study using fliers hung around

the Princeton University campus. Subjects were compensated with $30
for their participation in the 2-h session. Four subjects were excluded

from all analyses because more than one-third of their trials ( >200 out

of 600) failed to meet the trial inclusion criteria outlined below. The

remaining 16 subjects ranged in age from 19 to 38 years (mean 25.5); 4

of the 16 subjects were female; 14 of the 16 subjects reported

themselves to be right-handed. Written informed consent was obtained

in a manner approved by the Princeton Institutional Review Board.

Behavioral Paradigm
Figure 2 illustrates the design of the behavioral paradigm. Each trial

included the following events (in order): a fixation cross (randomly

sampled duration from 400 to 600 ms), a prime display (500 ms), a visual

mask (1000 ms), a probe display (presented until subjects responded or

until 5000ms had passed), and a screenwith the text ‘‘OK to blink’’ (1500

ms; not shown in Fig. 2). Both the prime and the probe displays consisted

of a red-tinted centered target picture from1of 4 categories (face, house,

shoe, or chair) superimposedon a grayscale offset distractor picture from

1 of the other 3 categories (see Stimulus Details below). Subjects had to

indicate whether the target (red-tinted) stimulus in the probe display

matched the target stimulus from the prime display. If the 2 stimuli were

identical, subjects had to say ‘‘match’’; otherwise, they had to name the

category of the probe stimulus as quickly as possible. We measured

priming effects by comparing reaction times from 2 types of trials:

ignored repetition trials, where the probe target matched the prime

distractor, and control trials, where the stimuli used in the prime display

and the stimuli used in the probe display were sampled from different

categories. Note that, on both ignored repetition and control trials, the

prime target and probe target came from a different category. Thus, the

correct response (to the probe) for both trial types was to name the

category of the probe target image.

In addition to ignored repetition and control trials, we also included

catch trials where the probe target was sampled from the same

category as the prime target. Half of the catch trials used the exact

same image for the prime target and the probe target (match trials), and

half of the catch trials used different images from the same category

(mismatch trials). These catch trials were included to ensure that

subjects were performing the delayed-match-to-sample task.

The experiment was composed of six 100-trial blocks. Between

blocks, subjects were given a break during which the experimenter

checked that the subject was comfortable and alert. In the first 5

blocks, ignored repetition, control, match, and mismatch trials each

made up one-sixth of the trials. In the remaining trials, the probe

distractor was identical to the prime target; these trials were left over

from an earlier (pilot) version of the experiment and were excluded

from the analyses described here. The final (sixth) block of trials

consisted of target images only (i.e., no distractors). These target-only

trials were used to test the classifier’s ability to detect the presence of

each image category when presented as a target image, as described

below, under Testing Classifier Sensitivity to the Target Category.

Stimulus Details
The stimuli consisted of 195 luminance-matched grayscale images from

each of 4 categories: faces, houses, shoes, and chairs. The image order

and the assignment of images to conditions (i.e., target vs. distractor on

either the prime vs. the probe display) were randomized across

subjects. Each stimulus was used on either 2 or 3 different trials within

the experiment (the mean stimulus presentation frequency was 2.5

trials). Within a particular category, all of the stimuli were presented

once before any stimuli were repeated across trials, and all of the

stimuli were presented twice before any stimuli were presented on

a third trial. For a given subject, each image was always used in the

same way across repetitions (e.g., if an item served as a probe distractor

in the control condition on its first presentation, it also served as

a probe distractor in the control condition on its second presentation).

Both prime displays and probe displays were generated by super-

imposing a target image and a distractor image over a uniform gray

background. On all displays, the target images were presented at 60% of

their normal contrast value (by linearly combining the luminance values of

the individual pixels of the imagewith a flat gray image in a ratio of 3:2).On

prime displays, half of the distractors were presented at 50% contrast and

the other halfwerepresented at 30%.Multiple levels of contrastwere used

to ensure variability in the level of distractorprocessing.Onprobedisplays,

distractors were always presented at 60% of their normal contrast. The

targetwascenteredonthe screenandwasgivena red tintby increasing the

magnitude of the red channel of the RGB image by 10% of the maximum

(see Fig. 2). The distractor imagewas offset from the target toward 1 of the

4 corners of the screen by 1.8� of visual angle (a new corner was chosen

randomly for each trial). Each image occupied 5.7� of visual angle, and the

total stimulus display subtended 7.5� of visual angle when presented on

a 17-inch CRTmonitor (100-Hz refresh rate) positioned at eye height 60$
away from the subject.

A visual mask was presented between the prime and probe displays

on each trial to reduce the possibility that subjects could use the

afterimage of the prime to perform the task. A unique mask was

generated for each trial by recombining phase-shifted components of

Figure 1. Hypothesized nonmonotonic relationship between the level of excitation of
a neuron and modification of synapses involving that neuron. Moderate levels of
excitation result in synaptic weakening, whereas stronger levels of excitation result in
synaptic strengthening.

Figure 2. Negative priming task design comparing control trials and ignored
repetition trials. In both the prime display and the probe display, subjects were
instructed to attend to the centered red-tinted image (i.e., the target) and to ignore
the offset grayscale image (i.e., the distractor). On control trials, the categories used
in the probe display did not overlap with the categories used in the prime display. On
ignored repetition trials, the probe target was identical to the prime distractor, and
the probe distractor was sampled from a category that was not used in the prime
display.
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a spatial Fourier decomposition of different images from each of the 4

categories. The experiment was presented using E-Prime 1.2 (Psycho-

logical Software Tools), run on a Windows PC.

EEG Data Acquisition
The EEG was recorded in an electrostatically shielded subject testing

room from 77 Ag/AgCl scalp electrodes placed according to the

international 10-20 system using custom 87-electrode caps (Electro-

Cap International). Signals were recorded using two 64-channel

preamplifiers from Sensorium Inc. with a bandpass of 0.02--300 Hz

and digitized at 1000 Hz with two 64-channel 12-bit National

Instruments data acquisition cards controlled by a custom Windows

software package developed in the laboratory. All channels were

referenced to the left mastoid (input impedance <5 kX) online. The

signal was rereferenced to the common mean and notch filtered at 60

and 120 Hz in subsequent processing.

Trial Inclusion Criteria
Trials were excluded from use in the EEG analyses if they were

contaminated by movement or eye-blink artifacts, if the subject’s

response was incorrect, or if the response time (RT) was excessively

fast ( <200 ms) or excessively slow ( >3 standard deviations [SDs] above

the mean). Eye-blink or other movement artifacts were identified by

computing a weighted running mean of the electrooculogram activity

based on Net Station’s eye-blink and movement detection algorithm

(Electrical Geodesics 2003). Trials were removed if the running mean

crossed a threshold of 40 lV within a window beginning 200 ms before

the cue onset and 500 ms after the prime offset. The total number of

excluded trials per subject ranged from 7 in the best case to more than

400 trials in the worst case. Subjects were excluded from the study if

more than 200 trials (out of a total of 600) had to be excluded. Of the

20 subjects run in the experiment, 4 were removed according to this

criterion. Overall, subjects’ error rate was low (less than 5%; see

Results), so our decision to remove error trials from the analysis did not

greatly reduce the total number of trials.

Preprocessing of EEG Data
The contiguous block of rereferenced EEG data was broken into

epochs starting 1200 ms prior to the onset of the prime and extending

2000 ms after prime onset. This window included a 1000-ms buffer at

the beginning and end of each trial to avoid edge effects when

performing the spectral decomposition. The spectral decomposition

was performed using a set of 49 Morlet wavelets that were

logarithmically spaced from 2 to 128 Hz. Each wavelet was built to

have a width that was 6 times the period of its center frequency. After

performing the decomposition, the 1000-ms buffers were dropped

from either end of each epoch, leaving us with a 1200-ms window,

starting 200 ms prior to stimulus onset and extending 1000 ms after

stimulus onset. The magnitude of each complex coefficient (i.e., the

power) was then computed and downsampled to 50 Hz by computing

the mean power of each component for every 20-ms bin within the

1200-ms recording window. Thus, the spectral decomposition trans-

formed each of the 60 time bins of a trial into the power values of

49 frequency bands for each of the 77 electrodes. Each unique

combination of frequency/electrode/time bin was z scored, such that

(across trials) the feature’s mean was zero and the feature’s SD was one.

These spectral features were used as inputs to the EEG pattern

classifiers.

Overview of EEG Pattern Classification Analysis
The goal of our EEG pattern classification analysis was to measure

processing of the prime distractor on each trial. The EEG analysis was

composed of the following steps: First, we trained a set of classifiers to

detect the patterns of spectral features associated with processing each

category as the target (attended) stimulus. Next, we tested the

classifiers’ ability to detect processing of both target and distractor

stimuli that had not been presented at training. For example, we used

the classifier trained to detect shoes as targets to measure processing

when the distractor category was shoe. As an initial index of classifier

performance, we computed classifier sensitivity (i.e., how well classifier

output discriminates between trials where the category was on-screen

vs. when it was totally absent). Finally, for our main analysis, we used

the classifier’s trial-by-trial readout of distractor processing to predict

behavioral negative priming effects. As is typical for classification

analyses, the classification procedure was run within individual subjects

(i.e., the classifier was trained on one subject’s data and then applied to

other data from that subject). These steps of the pattern classification

analysis are described in more detail below. Figure 3 provides an

overview of our EEG analysis procedures.

Training Category-Specific Classifiers
Classifier training was implemented using the ridge regression

algorithm (Hoerl and Kennard 1970; Hastie et al. 2001). The ridge

regression algorithm learns a linear mapping between a set of input

features and an outcome variable. Like standard multiple linear

regression, the ridge regression algorithm adjusts feature weights to

minimize the squared error between the predicted label and the

correct label. Unlike standard multiple linear regression, ridge re-

gression also includes an L2 regularization term that biases it to find

a solution that minimizes the sum of the squared feature weights. Ridge

regression uses a parameter (k) that determines the impact of the

regularization term. In our analysis, k was adaptively set to be equal to

5% of the number of input features for each classifier. Ridge regression

was implemented using the Matlab Multi-Voxel Pattern Analysis

toolbox (available for download at www.pni.csbmb.princeton.edu/

mvpa). We chose ridge regression instead of logistic regression (an

algorithm commonly used for 2-category classification) because we

needed a method that would allow us to distinguish moderate levels of

stimulus processing (where we predict negative priming) from lower

and higher levels of stimulus processing (where we do not predict

negative priming). Logistic regression transforms the weighted sum of

classifier inputs using a nonlinear link function, effectively clustering

the outputs of the classifier around zero and one; we were concerned

that this bimodal property of logistic regression would impede our

ability to distinguish between low, moderate, and high levels of

stimulus processing. Ridge regression does not have this nonlinearity,

and thus, it should do a better job of tracking intermediate levels of

stimulus processing.

A separate ridge regression classifier was trained for each combina-

tion of stimulus category (face, house, shoe, and chair) and time bin (all

20-ms time bins within the 1200-ms trial window). Each classifier was

trained to discriminate between trials where the category of interest

was on-screen as the prime target (these trials were labeled with a one)

and those where the category of interest was not on-screen at all (these

trials were labeled with a zero). For example, one classifier was trained

to detect shoe activity within the 40-ms poststimulus-onset time bin.

After being trained in this fashion, the classifier can be used to generate

a scalar estimate of how much the subject is processing the category of

interest for a particular time bin in a particular trial: Smaller values

(close to zero) indicate less processing, while greater values (close to

one) indicate more processing.

Feature Selection
To reduce the number of features being fed into the classifier, we used

a feature selection procedure, whereby we discarded features that

(individually) did not discriminate between the 2 conditions of interest.

This feature selection procedure was performed separately for each

classifier that we built. A nonparametric t statistic was used to decide

whether to keep each feature (defined as a particular frequency/

electrode/time bin pairing). The P value for each feature was computed

by comparing the output of a t-test run on the trials with their proper

condition labels to the distribution of outputs generated when the

labels were randomly shuffled 200 times. Features that discriminated

between our conditions of interest at the P < 0.01 level were included

in the classification process. We used a fixed statistical threshold across

time bins and subjects, rather than using a fixed number of features, in

order to better match (across time bins and subjects) the signal-to-

noise quality of the data going into the pattern classification. Note that

our feature selection procedure was restricted to the data points that
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were used for classifier training; the feature selection procedure never

used data points that were (subsequently) used for testing the

performance of the trained classifier.

Testing Classifier Sensitivity to the Target Category
The primary goal of our EEG pattern classification analysis was to

measure processing of prime distractor images and then relate this

measure to subjects’ behavior. However, before doing this, we

evaluated the classifiers’ ability to detect processing of the target and

distractor images; the classifiers needed to show above-chance

sensitivity to category-specific processing in order to be useful in

predicting behavior. In this section, we describe how we evaluated the

classifiers’ sensitivity to processing of target stimuli; in the next section,

we describe how we evaluated the classifiers’ sensitivity to processing

of distractor stimuli.

To evaluate the classifiers’ sensitivity to processing of the target

stimuli, we used a 10-fold cross-validation procedure consisting of the

following steps: First, we identified the eligible trials for the classifier

type of interest. For example, when training a face classifier, we found

all of the trials where faces were on-screen-as-target and all of the trials

where faces were not on-screen. Classifier training was limited to trials

with superimposed target and distractor stimuli (i.e., target-only trials

were never used for classifier training). Next, we randomly divided the

eligible trials into 10 sets. Nine out of the 10 sets were selected to

comprise the training set, and the remaining set was put aside to be

used as the testing set. Before training the classifier (on the 9 sets), we

made sure that equal numbers of trials were present from each

condition in the training set (i.e., that there were equal numbers of

category-on-screen-as-target and category-not-on-screen trials). Extra

trials were eliminated in a pseudorandom fashion from the condition

with more trials. We then ran feature selection on the training set (as

described above) to determine which features would be used to

perform the mapping. The classifier was trained on data from the

training set and applied to trials from the testing set (i.e., one-tenth of

the data not used at training). The classifier was also tested on the

target-only trials (which, as mentioned above, were never used for

training). As is standard practice in n-fold cross-validation, we cycled

through the preceding steps 10 times, each time selecting a different

set to ‘‘leave out’’ and use as the testing set. To ensure that our

results were not dependent on a particular way of dividing up the

trials, we repeated the entire 10-fold cross-validation procedure

10 times, each time using a different random division of the data into

tenths.

For each trial, all of the classifier estimates for a given time bin

were averaged together into a single estimate. The outputs were

then smoothed by replacing each value with the mean of the

surrounding 5 time bins (i.e., the mean of the surrounding 100-ms

window). To measure the classifier’s ability to decode the category

of the target stimulus, we used area under the receiver operating

characteristic curve (AUC) to quantify how well classifier output

discriminated between trials that had the category on-screen as

a target and those that did not have the category on-screen (Fawcett

2006).

Figure 3. Overview of the EEG data analysis procedure. This procedure was run separately for each individual subject. The spectral power of the rereferenced EEG around each
trial was computed and downsampled to 50 samples per second. The spectral features from all of the electrodes were concatenated and used as inputs to pattern classifiers. The
classifiers were trained using ridge regression to recognize when each stimulus category was being processed as the target image; a separate classifier was trained for each
combination of stimulus category and time bin. Next, the trained classifiers were used to measure how strongly the prime distractor image was processed on each trial. Finally,
subjects’ RTs (to the probe image) on individual trials were aligned to the classifier output from the respective trials. To assess the relationship between probe image RTs and
prime image distractor processing, trials were sorted into quartiles based on the processing of the prime distractor (as measured by the classifier). We then computed the mean
RT to the probe for each of the distractor-processing quartiles.
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Measuring Distractor Processing
To measure distractor processing, we took all of the classifiers that

were trained using the 10-fold cross-validation procedure described

above, and we applied these classifiers to trials where the category of

interest was on-screen as the prime distractor. For example, the

classifier trained to detect processing of faces was applied to the trials

in which faces were presented as the distractor image. Note that the

category-specific classifiers were trained on trials where the category

was present as a target or totally absent but never on those where the

category was present as a distractor; as such, for a given classifier, there

was no overlap between the trials used at training and those used to

measure distractor processing. As with the target sensitivity analysis

described in the previous section, we averaged all of the estimates for

each time bin and then temporally smoothed the estimates. We then

used AUC to quantify how well classifier output discriminated between

trials that had the category on-screen as a distractor and those that did

not have the category on-screen.

Combining Classifier Estimates across Time Bins
The methods described above yield a classifier estimate for each 20-ms

time bin within a trial. For our analyses relating classifier output to

behavior, we wanted estimates that summarize, for each trial (across

time bins), the degree of processing for a particular category. To obtain

a single estimate of the level of category-specific processing for each

trial, we computed the mean output of the 48 time bin classifiers

beginning with the first classifier poststimulus onset and ending

with the last classifier (i.e., the classifiers from bins 20- to 960-ms

poststimulus onset).

Relating Classifier Estimates to Behavior
Our primary analysis involved testing whether the magnitude of the

negative priming effect varied as a nonmonotonic function of distractor

processing, as predicted by the nonmonotonic plasticity hypothesis.

To measure the relationship between distractor processing and

priming, we split the trials into quartiles based on the estimated level

of distractor processing (i.e., the magnitude of the output of the

appropriate classifier) on each trial. The quartile boundaries were

computed separately for each subject by pooling the trials from the

control and ignored repetition conditions. These quartile boundaries

were then applied to each of the 2 conditions. We computed the

priming effect for each quartile by subtracting the mean RT of ignored

repetition trials in that quartile from that of control condition trials in

that quartile. We also ran a variant of the analysis where we divided up

trials into quartiles based on the degree of prime target processing

(instead of distractor processing). For both the distractor-processing

and the target-processing quartile analyses, we used a repeated

measures one-way analysis of variance (ANOVA) to test whether the

size of the priming effect varied significantly across quartiles and

performed post hoc tests between individual quartile effects using

paired Student’s t-tests. Also, to evaluate the reliability of the predicted

nonmonotonic pattern (correcting for multiple comparisons), we used

a nonparametric permutation test (see Results for details). The

significance of each test was evaluated using 2-tailed distributions with

n = 16 and a = 0.05. All data were confirmed to approximate a normal

distribution using a Kolmogorov--Smirnov test prior to performing any

statistics.

Results

Classifier Sensitivity Analysis

The results of the classifier sensitivity analysis are shown in

Figures 4 and 5. Sensitivity was indexed using AUC, where

chance = 0.5. Figure 4 shows the classifier’s sensitivity to the

category of the prime target stimulus, as a function of time-

elapsed poststimulus onset. When we averaged classifier output

across time bins, the classifier’s sensitivity to the target

category was 0.64 (standard error of mean [SEM] = 0.02),

which was significantly above chance, t15 = 8.45, P < 0.00001.

Figure 5 shows the classifier’s sensitivity to the category of the

prime distractor stimulus, as a function of time-elapsed

poststimulus onset. When we averaged classifier output across

time bins, the classifier’s sensitivity to the target category was

0.55 (SEM = 0.01), t15 = 4.82, P < 0.001. Overall, these results

show that the classifier was significantly above chance at

detecting the category of both target and distractor stimuli.

The finding that classifier sensitivity was higher for targets

than for distractors was expected; insofar as targets are

Figure 4. Average sensitivity of the classifier to the category of the prime target
stimulus, combining across the 4 categories. Sensitivity was computed in a cross-
validated fashion (i.e., different sets of trials were used for classifier training and
testing). The solid black line plots the AUC computed at each time bin. The shaded
region around this line indicates the standard error across subjects. The dotted black
line along 0.5 marks chance performance. The dots along the top of the figure
indicate which of the time bin--specific classifiers performed significantly above
chance at the P\ 0.05 level.

Figure 5. Average sensitivity of the classifier to the category of the prime distractor
stimulus, combining across the 4 categories. The classifier was trained on trials
where the category was on-screen as the ‘‘target’’ stimulus and then tested on
(other) trials where the category was on-screen as the ‘‘distractor’’ stimulus. The solid
black line plots the AUC computed at each time bin. The shaded region around this
line indicates the standard error across subjects. The dotted black line along
0.5 marks chance performance. The dots along the top of the figure indicate which of
the time bin--specific classifiers performed significantly above chance at the P\ 0.05
level.
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processed more strongly than distractors, we would expect

target processing to be more detectable than distractor

processing. The most important point here is that distractor

sensitivity was above floor, which licenses us to proceed with

analyses relating distractor processing (as measured by the

classifier) to behavior. In the Supplementary Material, we

present additional analyses comparing classifier sensitivity for

targets and distractors; we also show that classifier sensitivity

was significantly above chance for all 4 categories (for both

targets and distractors), and we present classifier ‘‘importance

maps’’ showing which features were used by the classifiers to

detect each of the 4 categories.

The finding of above-chance classification prior to stimulus

onset in Figures 4 and 5 is an artifact of our spectral

decomposition procedure, which used 6-cycle wavelets. Six-

cycle wavelets have better frequency resolution than shorter

wavelets, but they induce a higher degree of temporal

smearing. The finding of above-chance classification prior to

stimulus onset goes away when we use 3-cycle wavelets.

Negative Priming Results: Behavior

Consistent with previous negative priming studies (e.g., Tipper

1985; Fox 1995), we found a significant negative priming effect

for reaction times: Subjects were 15 ms slower overall to name

images in the ignored repetition condition (M = 922 ms)

compared with the control condition (M = 907 ms), SEM of the

ignored repetition--control difference = 5.5 ms, t15 = 2.71, P <

0.05. Response accuracy (indexed in terms of percent correct)

was effectively at ceiling in both the ignored repetition

condition (M = 98.4) and the control condition (M = 97.8)

and did not differ significantly across these conditions, SEM of

the ignored repetition--control difference = 0.7, t15 = –0.90, n.s.

Negative Priming Results: Relating Distractor Processing
to Behavior

The key question that we wanted to address was how the size

of the negative priming effect varied as a function of prime

distractor processing (measured via the EEG pattern classifica-

tion analysis). Consistent with the nonmonotonic plasticity

hypothesis, we found that the priming effect varied non-

monotonically as a function of prime distractor processing. The

results of our quartile analysis (where we split trials into

quartiles based on the level of prime distractor processing) are

shown in Figure 6. A repeated measures ANOVA showed that

the magnitude of the priming effect was significantly different

across distractor-processing quartiles (F3,45 = 4.21, P < 0.05).

The priming effects within each quartile were as follows: The

low distractor-processing quartile showed a nonsignificant

–15 ms priming effect (t15 = 1.37, n.s.); the medium-low

distractor-processing quartile showed a significant –51 ms

priming effect (t15 = 4.87, P < 0.001); the medium-high

distractor-processing quartile showed a nonsignificant –10 ms

priming effect (t15 = 1.01, n.s.), and the high distractor-

processing quartile showed a nonsignificant 11 ms priming

effect (t15 = 0.69, n.s.). Pairwise comparisons between the

quartile priming effects reveal a nonmonotonic pattern: The

priming effect in the medium-low distractor-processing quar-

tile was significantly more negative than those in the other 3

quartiles. The statistics for the pairwise comparisons are

reported in the Supplementary Material; we also present the

results of the analysis split by prime distractor category (face,

house, shoe, and chair) in the Supplementary Material.

Next, we used a nonparametric test to assess the probability

of obtaining this nonmonotonic pattern due to chance

(correcting for multiple comparisons). Going into the exper-

iment, we had predicted that the negative priming effect would

be largest given moderate processing compared with high and

low processing, but we did not have a prediction regarding

which of the moderate-processing quartiles (i.e., medium-low

or medium-high) would show the largest negative priming

effect. Thus, there were 2 patterns of quartile priming effects

that we would have regarded as equally consistent with our

hypothesis (pattern 1: significantly more negative priming in

the medium-high quartile than in the high and low quartiles,

P < 0.05 for each pairwise comparison; pattern 2: significantly

more negative priming in the medium-low quartile than in the

high and low quartiles, P < 0.05 for each pairwise comparison).

For our nonparametric test, we assessed the likelihood of

obtaining either of these patterns by chance, by shuffling each

subject’s RT data with respect to the classifier output data

(note that the shuffle was done within condition, so each

subject’s mean control RT and ignored repetition RT were

unchanged); this shuffle instantiates the null hypothesis that

prime distractor processing has no impact on probe RTs. We

shuffled the RT data 10 000 times. For each of the 10 000

shuffled versions of the data, we recomputed the quartile

priming scores and measured whether there were statistically

significant differences between quartiles. We found that the

probability of obtaining a nonmonotonic effect in the shuffled

data (i.e., either pattern 1 or pattern 2 listed above) was less

than 0.005.

As mentioned in the Trial Inclusion Criteria part of the

Materials and Methods, our EEG analysis excluded trials where

subjects responded incorrectly. The error rate in this study was

very close to zero, and it did not differ significantly across the

ignored repetition and control conditions, so we did not

Figure 6. Comparison of priming effects as a function of prime distractor processing.
Trials were split into quartiles based on the level of prime distractor processing, and
then, priming effects were computed separately for each quartile. The priming effect
in the medium-low distractor-processing quartile was significantly more negative than
that in the other 3 quartiles. Significance values reflect the reliability of the difference
across subjects. Error bars indicate standard errors (across subjects) on the mean
priming effect within each quartile.
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expect this exclusion to have a large effect. Nonetheless, to

ensure that this exclusion was not influencing our results, we

subsequently ran a version of the analysis where error trials

were included. The results of this analysis are reported in the

Supplementary Material. Including these error trials did not

change any of our key results. Most importantly, the priming

effect for the medium-low quartile was still significantly more

negative than those for other quartiles. Also, we found in this

analysis that error rates did not vary across conditions (control

vs. ignored repetition) within any of the quartiles, and the

effect of condition on error rates did not vary across quartiles.

Negative Priming Results: Role of the Control Condition

In the analyses reported above, we evaluated the nonmono-

tonic plasticity hypothesis by subtracting ignored repetition

RTs from control RTs within each distractor-processing

quartile. The control condition and the ignored repetition

condition were matched in every respect except for the fact

that the prime distractor was repeated as the probe target in

the ignored repetition condition (but not in the control

condition). Thus, the effect of subtracting ignored repetition

RTs from control RTs was to isolate the effect of stimulus

repetition on RTs, unconfounded by other factors that might be

shared across the 2 conditions.

In this section, we report the results of quartile analyses

conducted separately on control RTs and ignored repetition

RTs; these analyses allow us to see whether there were effects

of distractor processing on RT that were hidden by the control

versus ignored repetition subtraction. We had expected that

the ignored repetition condition would show a nonmonotonic

effect of prime distractor processing on probe RTs (akin to the

pattern shown in Fig. 6) and that the control RTs would be

relatively flat as a function of distractor processing. However,

this is not the pattern that we found. The mean quartile RTs in

the ignored repetition condition (considered on its own) did

show the same nonmonotonic pattern as the mean quartile

priming effects, but the effect was weak and did not reach

significance: A repeated measures ANOVA did not find that RTs

varied significantly over levels of distractor processing (F3,45 =
1.50, n.s.), and the pairwise comparisons of these quartile

effects did not cross the P < 0.05 significance threshold. These

mean quartile RTs are shown in panel A of Figure 7. The

pattern of mean RTs across quartiles in the control condition

was the opposite of the pattern observed in the ignored

repetition condition. That is, RTs associated with medium-low

levels of prime distractor processing were the fastest, whereas

those associated with high levels of prime distractor processing

were slowest. Again, a repeated measures ANOVA did not find

that RTs varied significantly over levels of distractor processing

(F3,45 = 2.74, n.s.). However, statistical pairwise comparisons

showed that mean RTs in the medium-low distractor-process-

ing quartile were significantly faster than those in the low

distractor-processing quartile and the high distractor-process-

ing quartile. These results are shown in panel B of Figure 7. The

statistics for the pairwise comparisons from both conditions

are reported in the Supplementary Material.

The unexpected presence of quartile differences in the

control condition (and the lack of robust quartile differences

in the ignored repetition condition) highlights the impor-

tance of including this control when evaluating nonmono-

tonic plasticity; the predicted pattern only emerges when we

compute the difference between control RTs and ignored

repetition RTs. These results also pose an interesting

question: Why were there quartile differences in the control

condition? In the Discussion, we explain these differences in

terms of a location-based negative priming effect that affected

processing in both the control condition and the ignored

repetition condition.

Relating Target Processing to Behavior

Finally, we ran a version of the analysis where we split trials

into quartiles based on how strongly the target was processed

during the prime (instead of the distractor). The results of

this analysis are shown in Figure 8. There were no significant

differences in priming across quartiles, and the quartile

means did not show the nonmonotonic pattern (see the

Supplementary Material for detailed statistics). This suggests

that the nonmonotonic pattern shown in Figure 6 is

specifically attributable to differences in distractor process-

ing, as opposed to more general factors (e.g., fluctuations in

subjects’ attentional state) that impact both target and

distractor processing.

Figure 7. Comparison of RTs as a function of prime distractor processing for the ignored repetition and control conditions. Each panel shows the mean RT of each quartile of
trials when sorted by distractor processing during the prime. The relationship between distractor processing and RT in the ignored repetition condition (A) follows the same trend
as was observed between distractor processing and negative priming. The relationship between distractor processing and RT in the control condition (B) shows the opposite
relationship (i.e., the RTs were fastest for trials with medium-low distractor processing and slowest for trials with high distractor processing). Significance values reflect the
reliability of the difference across subjects, calculated using a 2-tailed paired-samples t-test. Error bars indicate standard errors (across subjects) on the mean RT within each
quartile.
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Discussion

According to the nonmonotonic plasticity hypothesis, moder-

ate excitation of a representation should trigger weakening of

that representation (Bienenstock et al. 1982; Diederich and

Opper 1987; Gardner 1988; Vico and Jerez 2003; Senn and Fusi

2005; Norman et al. 2006). In keeping with this hypothesis, we

found a robust negative priming effect given moderate (but not

higher or lower) levels of distractor processing.

The nonmonotonic plasticity hypothesis was first proposed

by Bienenstock et al. (1982) in the form of a computational

model of plasticity in visual cortex. Subsequently, this

hypothesis has been instantiated in several other computational

theories of learning (e.g., Diederich and Opper 1987; Gardner

1988; Vico and Jerez 2003; Senn and Fusi 2005; Norman et al.

2006), and slice electrophysiology studies have provided

evidence in support of the nonmonotonic plasticity hypothesis

at the level of single synapses (e.g., Artola et al. 1990; Hansel

et al. 1996). The current study provides the first evidence that

the nonmonotonic plasticity hypothesis scales up to the level

of distributed representations (i.e., the summed activity over

millions of neurons as measured by scalp EEG) and has

a measurable effect on behavioral performance, as predicted

by Norman et al. (2006). These results link the conditions

known to induce synaptic long-term depression in rodents

(Artola et al. 1990; Hansel et al. 1996) to diminished

accessibility of perceptual representations in humans. Addi-

tional investigations will be required to test if the latter effect is

dependent on the former effect.

It is worth noting that it is not possible, given our current

results, to define the absolute level of processing at which

weakening begins or at which strengthening takes over. While

slice electrophysiology studies have documented the absolute

levels of membrane potential at which weakening (e.g., Artola

et al. 1990; Hansel et al. 1996) occurs, it is difficult to obtain

absolute measures of stimulus processing from the scalp. Our

results serve as an existence proof that memory strength can

vary in a nonmonotonic fashion as a function of stimulus

processing; more work is needed to identify absolute markers

of the level of processing that triggers weakening.

Explaining Results from the Control Condition

Going into the experiment, we had not expected to find an

effect of prime distractor processing on probe RTs in the

control condition. We were therefore surprised to find a non-

monotonic effect of distractor processing on control RTs,

whereby RTs in the medium-low distractor-processing quartile

were significantly faster than those in the low distractor-

processing quartile and the high distractor-processing quartile.

The pattern of RT results in the control condition can be

explained by a location-based negative priming effect: Several

studies have found that subjects are slower to respond to an

item when it is placed where a previously ignored stimulus had

been located (Tipper et al. 1990; Connelly and Hasher 1993;

Milliken et al. 1994). In both the control condition and the

ignored repetition condition, the prime distractor and the

probe distractor appeared in the same location. As such, any

suppression that accrues to the location of the prime distractor

will transfer to the (same-location) probe distractor; this

decrease in processing of the probe distractor should result

in faster processing of the probe target. RTs in the ignored

repetition condition are therefore subject to 2 distinct negative

priming effects: location-based negative priming (which leads

to faster probe RTs) and item-based negative priming (which

leads to slower probe RTs). The control condition is subject to

the former location-based effect (since the distractor location

is the same in the prime and the probe) but not to the latter

item-based effect (since the prime distractor itself is not

repeated). Insofar as ignored repetition RTs reflect location-

based priming plus item-based priming, and control RTs reflect

location-based priming (alone), this implies that computing the

difference between control RTs and ignored repetition RTs will

recover the item-based priming effect, which shows the

predicted nonmonotonic shape.

One feature of the above account requires further explana-

tion: If RTs in the control condition were being modulated by

location-based priming, why did these RTs vary nonmonotoni-

cally with the classifier’s readout of distractor identity process-

ing? In this paradigm, we expect that location and object identity

processing will be highly correlated: Processing of the distrac-

tor’s identity is likely to also involve processing of its location; as

such, the classifier’s readout of distractor identity processing can

be used as a proxy for distractor location processing. Further-

more, we hypothesize that nonmonotonic plasticity is a general

principle that should apply to location representations in

addition to object identity representations. These claims imply

that we should observe a nonmonotonic relationship between

our proxy measure of location processing (i.e., classifier output)

and RTs in the control condition, which is what we found. This

account also helps to explain why RTs were relatively flat across

quartiles in the ignored repetition condition: If identity and

location processing are highly correlated, then levels of

distractor identity processing that lead to an item-based negative

priming effect should be accompanied by levels of distractor

location processing that lead to a negative location-based

priming effect. As described above, these 2 effects push RTs in

opposite directions on ignored repetition trials and thus should

(approximately) cancel each other out. These ideas could be

tested in future work by orthogonally manipulating whether the

identity of the distractor is repeated and whether the location of

the distractor is repeated; this would make it possible to

Figure 8. Comparison of priming effects as a function of prime target processing.
Trials were split into quartiles based on the level of prime target processing, and then,
priming effects were computed separately for each quartile. None of the pairwise
comparisons of the quartile priming effects were significant. Error bars indicate
standard errors (across subjects) on the mean priming effect within each quartile.
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separately assess how location- and identity-based priming

effects vary as a function of prime distractor processing.

Relationship to Other Work on Negative Priming

The link between negative priming and nonmonotonic

plasticity was first made in a conference presentation by Gotts

and Plaut (2005). Their approach to testing these predictions

was to manipulate the relative brightness of targets and

distractors (as a means of manipulating distractor processing).

Using this purely behavioral approach, they found that

increasing distractor processing led to a transition between

negative and positive priming, but they were not able to trace

out the full nonmonotonic curve. One limitation of the

approach taken by Gotts and Plaut (2005) is that distractor

processing can vary within conditions defined by particular

stimulus brightness values; subjects might succeed at com-

pletely ignoring a bright distractor, and they might clearly

perceive a dim distractor. This within-condition variability

makes it harder to detect the predicted nonmonotonic effect

as a function of stimulus brightness. A key benefit of our

approach is that it allows us to measure—and thus account

for—within-condition variability in distractor processing (see

Benefits of Pattern Classification for additional discussion of

this point).

Our preferred interpretation of our results is that moderate

distractor processing weakened the distractor’s representation,

resulting in slower RTs when the subject (subsequently) had to

name the item’s category. However, there are other theories of

negative priming (besides nonmonotonic plasticity) that can

explain the nonmonotonic pattern of results observed here. For

example, the temporal discrimination theory set forth by

Milliken et al. (1998) predicts that reaction times to moderately

processed primes will be slow because these primes were

processed well enough to be familiar (thereby inducing the

perceptual system to try to retrieve prior instances of the

item), but the level of processing was not high enough to

support successful recollection of the prior instance; the time

wasted with this failed retrieval attempt leads to slow RTs.

Within the domain of perceptual priming, the predictions of

this theory mimic those of the nonmonotonic plasticity

hypothesis. The key difference between the Milliken et al.

(1998) account of the nonmonotonicity and the nonmonotonic

plasticity hypothesis is that the latter is a domain-general

learning principle—According to the nonmonotonic plasticity

hypothesis, nonmonotonic learning effects should be observed

across multiple memory paradigms and dependent measures,

ranging from long-term cued-recall accuracy to perceptual task

RTs. By contrast, the nonmonotonic relationship predicted by

Milliken et al. (1998) applies to a much narrower range of

situations (RTs to repeated stimuli).

Regardless of which explanation is correct, our finding that

priming effects are nonmonotonically related to (initial) prime

processing may help to explain numerous puzzling results in

the negative priming literature. For example, manipulations of

target--competitor perceptual grouping (i.e., whether or not

the target and competitor are perceived as a single object) have

been shown to magnify the negative priming effect in some

studies (Fox 1998) and to reverse it in others (Fuentes et al.

1998). A nonmonotonic relationship between distractor

processing and priming could account for these apparently

contradictory results: If distractor processing starts out low,

then increasing the degree of distractor processing could push

it from the low-excitation (no-learning) region of the plasticity

curve to the moderate-excitation (weakening) region, thereby

boosting the negative priming effect. However, if distractor

processing starts out at a moderate level, then increasing

distractor processing could push the distractor from the

moderate-excitation (weakening) region to the high-excitation

(strengthening) region, thereby reversing the negative priming

effect.

Negative Priming as a Measure of Learning

Given that the nonmonotonic plasticity hypothesis should

apply across multiple learning domains, why did we choose the

negative priming paradigm to test the hypothesis? The main

benefit of the negative priming paradigm is that the average

level of competition between the target and the distractor can

be adjusted in a straightforward fashion (e.g., by manipulating

stimulus visibility). However, one drawback of using negative

priming is that there is some ambiguity about the degree to

which learning (i.e., lasting synaptic adjustment) is responsible

for observed priming effects. While the negative priming effect

has been shown to persist for as long as a month (DeSchepper

and Treisman 1996), suggesting that the slowed RTs reflect

a learning-based mechanism, this does not mean that all

negative priming findings reflect lasting synaptic modification.

Given the short time lag between the prime and probe in our

study, it is possible (in principle) that priming effects in our

study could be due to short-term carryover of activation (or

habituation) from the prime rather than lasting adjustment of

synapses.

However, in practice, it is difficult to see how short-term

activation/habituation effects could account for the particular

pattern of results observed here. In recent work using a short-

term repetition priming paradigm (with zero lag between the

prime and the probe), Huber and others have demonstrated

that short prime durations facilitate probe processing and

longer prime durations inhibit probe processing (possibly due

to neural habituation effects; for a review, see Huber and

O’Reilly 2003). This pattern of results is the exact opposite of

the pattern observed here: In our study, the function relating

prime processing to the size of the priming effect (Figs 1 and 6)

initially dips below zero (negative priming) and then rises

nonsignificantly above zero (positive priming). By contrast, in

the short-term priming studies reviewed by Huber and O’Reilly,

the function relating prime duration to the size of the priming

effect initially rises above zero (positive priming) and then dips

below zero (negative priming). This difference suggests that

our results and the Huber and O’Reilly results are attributable

to different mechanisms.

Extensions to Other Paradigms

To further evaluate the nonmonotonic plasticity hypothesis, we

plan to explore nonmonotonic plasticity effects using long-

term memory paradigms, where it is unambiguous that learning

effects are driven by lasting synaptic changes. One potentially

relevant paradigm is the think--no think paradigm (Anderson

and Green 2001; Anderson et al. 2004). In this paradigm,

subjects are given a cue that was previously associated with

another item, and they are instructed to avoid retrieving the

memory associated with that cue; the basic finding is that

trying not to retrieve a memory (when it is strongly cued)
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makes that memory more difficult to retrieve later. As with

negative priming, the literature is mixed: While numerous

studies have observed a forgetting effect, others have not

(Bulevich et al. 2006). According to the logic of the present

study, it may be possible to explain both successes and failures

in terms of variability in the excitation of the to-be-forgotten

representation: Successful forgetting (weakening) should

occur with moderate excitation and forgetting should be

unsuccessful with higher and lower levels of excitation.

Benefits of Pattern Classification

More generally, the work described here adds to a growing body

of literature that leverages advances in machine learning to

explore the neural mechanisms of cognition (e.g., Polyn et al.

2005; Philiastides et al. 2006; McDuff et al. 2009). Pattern

classification methods make it possible to covertly track

otherwise-uncontrolled variance in latent cognitive states, which

we can then relate to behavior. Other studies have used neural

data to measure differences in the average level of distractor

processing across conditions (Yi et al. 2004; Vogel et al. 2005).

As described above, a key advantage of our pattern classification

approach is that it allows us to derive a trial-by-trial readout of

prime distractor processing within a particular condition, which

we can then relate to trial-by-trial variance in probe reaction

times. In this study, our ability to measure the level of distractor

processing on a trial-by-trial basis allowed us to isolate a 51-ms

negative priming effect (in the medium-low distractor-processing

quartile), whereas the basic negative priming effect (computed

across all trials) was less than one-third of that magnitude (15 ms).

The present results suggest that measuring neural processing

with classifiers may help to resolve fundamental questions

regarding how neural dynamics shape learning.

It is worth noting that the pattern classification approach

carries a cost both in terms of methodological transparency and

in required computation time. Yet, we believe that these costs

are negated with the availability of freely downloadable pattern

classification toolboxes and the benefits that accompany this

approach. The main benefit of the pattern classification

approach is that it makes full use of the information in the data.

In contrast, a more standard event-related potential--based

approach, in which the amplitude of an evoked response is

used as the estimate of the level of processing, may not. For

example, the extent to which a face was processed could be

estimated based on the amplitude of the evoked N170. However,

the N170 is clearly not the only type of neural activity that is

informative regarding face processing. The pattern classification

method involves an explicit feature discovery stage (feature

selection) that makes it possible to discover other types of

informative activity (in addition to components related to the

N170) and then leverage them to estimate the level of face

processing. This property of the pattern classification approach

makes it particularly powerful for estimating the level of

processing of stimuli for which well-defined evoked responses

have not been well characterized (e.g., chairs or shoes).

Conclusions

In summary, the present study used an EEG pattern classifica-

tion analysis to characterize the relationship between the level

to which a stimulus was processed and its subsequent

accessibility. Consistent with the nonmonotonic plasticity

hypothesis, we found that the negative priming effect was

largest, given moderate (as opposed to higher or lower) levels

of stimulus processing. In addition to providing an existence

proof for this nonmonotonic relationship, these results link the

conditions known to generate synaptic weakening to di-

minished accessibility of perceptual representations in humans.
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